Prediction of Protein Domain with mRMR Feature Selection and Analysis
نویسندگان
چکیده
The domains are the structural and functional units of proteins. With the avalanche of protein sequences generated in the postgenomic age, it is highly desired to develop effective methods for predicting the protein domains according to the sequences information alone, so as to facilitate the structure prediction of proteins and speed up their functional annotation. However, although many efforts have been made in this regard, prediction of protein domains from the sequence information still remains a challenging and elusive problem. Here, a new method was developed by combing the techniques of RF (random forest), mRMR (maximum relevance minimum redundancy), and IFS (incremental feature selection), as well as by incorporating the features of physicochemical and biochemical properties, sequence conservation, residual disorder, secondary structure, and solvent accessibility. The overall success rate achieved by the new method on an independent dataset was around 73%, which was about 28-40% higher than those by the existing method on the same benchmark dataset. Furthermore, it was revealed by an in-depth analysis that the features of evolution, codon diversity, electrostatic charge, and disorder played more important roles than the others in predicting protein domains, quite consistent with experimental observations. It is anticipated that the new method may become a high-throughput tool in annotating protein domains, or may, at the very least, play a complementary role to the existing domain prediction methods, and that the findings about the key features with high impacts to the domain prediction might provide useful insights or clues for further experimental investigations in this area. Finally, it has not escaped our notice that the current approach can also be utilized to study protein signal peptides, B-cell epitopes, HIV protease cleavage sites, among many other important topics in protein science and biomedicine.
منابع مشابه
A New Framework for Distributed Multivariate Feature Selection
Feature selection is considered as an important issue in classification domain. Selecting a good feature through maximum relevance criterion to class label and minimum redundancy among features affect improving the classification accuracy. However, most current feature selection algorithms just work with the centralized methods. In this paper, we suggest a distributed version of the mRMR featu...
متن کاملPrediction of Protein Modification Sites of Pyrrolidone Carboxylic Acid Using mRMR Feature Selection and Analysis
Pyrrolidone carboxylic acid (PCA) is formed during a common post-translational modification (PTM) of extracellular and multi-pass membrane proteins. In this study, we developed a new predictor to predict the modification sites of PCA based on maximum relevance minimum redundancy (mRMR) and incremental feature selection (IFS). We incorporated 727 features that belonged to 7 kinds of protein prop...
متن کاملPrediction of Protein-Protein Interaction Sites by Random Forest Algorithm with mRMR and IFS
Prediction of protein-protein interaction (PPI) sites is one of the most challenging problems in computational biology. Although great progress has been made by employing various machine learning approaches with numerous characteristic features, the problem is still far from being solved. In this study, we developed a novel predictor based on Random Forest (RF) algorithm with the Minimum Redund...
متن کاملPrediction of Protein Sub-Mitochondria Locations Using Protein Interaction Networks
Background: Prediction of the protein localization is among the most important issues in the bioinformatics that is used for the prediction of the proteins in the cells and organelles such as mitochondria. In this study, several machine learning algorithms are applied for the prediction of the intracellular protein locations. These algorithms use the features extracted from pro...
متن کاملFeature selection in high dimensional EEG features spaces for epileptic seizure prediction
Digital signal processing of Electroencephalogram (EEG) can support the diagnosis and alarming for the benefit of humans. About one third of all epileptic patients suffer from refractory epilepsy; seizure prediction based on the EEG information content is an area of intense activity since at least twenty years. In this paper we analyze the high dimensional feature space created by a variety of ...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
عنوان ژورنال:
دوره 7 شماره
صفحات -
تاریخ انتشار 2012